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Abstract. A simple one-dimensional model for describing CVI into a fibrous preform is presented and analyzed.
The derivation requires that the thermal and electrical properties of the preform and substrate are disparate. Math-
ematically the model takes the form of a moving-boundary problem, where the boundary is the interface between
the preform and the substrate. Effects of heat loss and radiation at the boundaries and the nonlinear dependence
of dielectric parameters on temperature are all taken into account, in addition to the spatial dependence on gas
concentration. Processing times for different power levels and inlet concentrations for different initial substrate
thicknesses are obtained, and the implications to processing strategies are discussed.
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1. Introduction

Chemical Vapor Infiltration (CVI) into a fibrous preform has been used to fabricate ceramic
composite materials that are mechanically strong and can withstand large operating tempera-
tures. Conventional heating strategies used in this process require large amounts of energy and
long processing times. An additional drawback is pore choking at the surface of the preform.
This occurs because the surface temperature is hotter than the interior and the concentration
of the gas is greater at the surface as well. Thus, the reaction rate is larger at the surface and
the pores fill up there, choking off the reaction process in the interior [1]. Optimization of
conventional processes has also been the subject of mathematical interest as well [2].

Microwaves, on the other hand, efficiently heat the preform volumetrically and produce an
inverted temperature gradient; the surface of the preform is cooler than the interior because of
the convective and radiative heat loss. Thus, the reaction rate is higher in the interior of the
preform and this causes the composite to grow from the inside out. This configuration results
in a more uniform product after the completion of the process. This has been borne out by
experiment [3]. However, if this filling process is not done quickly enough, then the pores at
the environment/preform interface will close before completion [3].

The use of microwave heating in this particular CVI process has been modeled in a variety
of ways. Gupta and Evans [5], and later Deepak and Evans [6, 7], have investigated the mi-
crowave heating of the preform assuming that the local electrical and thermal properties of the
preform do not change as the reaction proceeds. In this paper, we consider the dynamic version
of this process: as the desired product fills the pores, the electrical properties change consid-
erably from the unfilled region. Such property changes in exothermic chemical reactions have
been modeled successfully using asymptotic techniques [8, 9, 10]. These techniques rely on a
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thin reaction zone (flame front), whose thickness scales on the inverse of the activation energy,
in which the chemical process takes place, separating the unreacted zone from the processed
region. Appropriate jump conditions in reactant concentration and temperature can be found
by analyzing the full reaction system in the reaction zone, and using matched asymptotic
expansions to find the appropriate boundary conditions. In a previous work [11], we defined
the reacting front as an isotherm in the material, ignoring variations in reactant concentration.
We shall see in the current work that these effects are significant, but that the temperature
at the interface between composite material and unreacted material remains fixed during the
reacting stage of the process. We also show in an Appendix the difference asymptotically
between defining the reacting interface thermally or compositionally.

The heating of the preform and substrate, without any chemical reaction, has been per-
formed by Pelesko and Kriegsmann [12]. They found that if the square ratio of the thermal
conductivities is proportional to the ratio of the electrical conductivities (this ratio is approx-
imately 10−5 for the current system), then the electric and thermal problems decouple. The
temperature in the substrate is essentially constant, and the preform temperature obeys a heat
equation with a heat flux entering the preform from the substrate that depends on the total
power conversion within the substrate and the time rate-of-change of the temperature.

In this paper, we develop a simple one-dimensional model of CVI into a low-loss fibrous
preform to fabricate a silicon carbide (SiC) composite. This scenario can occur in two different
ways. In the first case a low-loss material, such as alumina (Al2O3) can be chosen. In the
other, some highly conducting preform material can be used, but its porosity will have to
be greater to assume the effective electrical conductivity of the preform remains disparate to
that of the composite. In the following, we consider the first case. Since the alumina and SiC
have disparate thermal and electrical conductivities the theory presented in [12] is relevant.
We extend this model to include a moving front which separates the SiC composite from the
preform and develop a numerical method for computing its position as a function of time.
Threshold power levels for front propagation are found. We terminate the simulation with a
stopping criterion that simultaneously determines when the model loses its asymptotic validity
and when the gas inlet pore closes. For lower powers the front moves too slowly and the
surface pores close and choke the process. This would produce an unsatisfactory composite.
Further, increasing the concentration of the reactant at the inlet also causes the pores to close
since the reaction rate depends upon the local reactant concentration.

The paper is organized as follows. In Section 2, we state the physical problem, and using
asymptotic techniques find the leading-order problem in of temperature and gas concentration
within the preform, and the appropriate boundary conditions local to the moving interface.
We simulate the solution to this system numerically in Section 3, and present a parametric
study of the process for different power levels, inlet gas concentrations, and initial (uniform)
temperatures. We conclude in Section 4 by discussing processing strategies.

2. Problem formulation

2.1. MODEL

Consider the sample configuration in Figure 1. A plate of SiC of thickness 2 So lies between
by two layers of a fibrous preform, each of thickness a − So. The process consists of forcing
a trichloromethylsilane (TMS) and (inert) H2 mixture into both sides of the preform at a fixed
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pressure. The typical pore size is on the order of microns, while the thickness of both the
substrate and the preform are on the order of centimeters.

The TMS is unstable, and breaks down within the preform into HCl and SiC according to
the approximate one-step reaction

CH3Cl3Si +H2 +�HR → SiC + H2 + 3HCl , (1)

where �HR is the amount of energy per mole (approximately 110 kJ/mole).
The silicon carbide coats the alumina fibers within the preform, filling the pores to generate

the composite. The reaction is endothermic, with a reaction rate that has an Arrhenius depen-
dence in temperature and a linear dependence on the local concentration (or equivalently the
partial pressure)

kR = koC̄TMS e
− Ea
RgT , (2)

where ko is a rate constant (approximately 2·5 m/s), C̄ = C̄TMS is the concentration of the
TMS gas, Ea is the activation energy of the reaction (approximately 120 kJ/mole) , Rg is the
universal gas constant, and T is the temperature. The sample is assumed to be irradiated by
monochromatic electromagnetic plane waves from both sides of the sample. We would like
to represent this filling process in a simple mathematical framework in order to gain better
insight for enhancements.

A first simplification of the porous preform is to use effective material constants which
depend linearly on the local porosity of the material φ

ρcp(φ) = ρAcp,A(1 − φo) + ρScp,S(φo − φ) + ρgcp,gφ , (3)

K(φ) = KA(1 − φo) +KS(φo − φ)+ Kgφ , (4)

ζ(φ, T ) = ζA(T )(1 − φo) + ζS(T )(φo − φ)+ ζg(T )φ , (5)

where the subscripts A correspond to the material properties of pure alumina, S to the material
properties of pure SiC, and g to the material properties of the gas mixture. The material
properties are the density ρ, the specific heat at constant pressure cp, the thermal conductivity
K, and the electrical conductivity ζ. Note that we are assuming the product of the density and
heat capacity of the matrix is dependent on the local porosity. In Table 1 we list the density,
specific heat (constant pressure), thermal conductivity, electrical conductivity, and thermal
diffusivity for alumina Al2O3, SiC, and a mixture of H2 and TMS (10% mole fraction at 1273
K). Notice that the density, heat capacity, thermal and electrical conductivities of the alumina
and SiC are several orders of magnitude larger than that of the gas mixture. These terms
are then neglected in the following analysis. Also note that the thermal diffusivity of the gas
mixture is much larger than that of the alumina fibers, suggesting that the temperature of the
gas equilibrates on a much faster time-scale that the thermal conduction of the alumina fibers.

A second simplification is that the porosity of the material can be represented as an array
of cylindrical pores (see Sotirchos [4]). Using this geometrical model, we can express the pore
radius r̄(x̄, t̄ ) in terms of the local porosity as(

r̄

r0

)2

=
[

log (1 − φ)

log (1 − φ0)

]
, (6)

where r0 and φ0 are the initial values of the pore radius and porosity, respectively. It will be
convenient to follow the transition of the composite by tracking the effective pore radius in
space and in time, and from this geometric assumption, relate back to the porosity in space.
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Table 1. Material properties of alumina, SiC, and the gas
mixture at 1273 K and 10 000 Pa. Note that the value of
thermal conductivity of the gas mixture is that for hydrogen
gas at 273 K.

Al2O3 SiC H2 and TMS

ρ (kg/m3) 3891 3110 0·062

cp (J/kg K) 1255 1100 0·53

K (W/m K) 7·22 35·7 0·172

σ (mho/m) 0·1 102 − 103 0

κ (m2/s) 1·5 × 10−6 9 × 10−6 1·28

Figure 1. Problem configuration for CVI of a fibrous preform on a composite.

A third assumption is that there is no dependence on the solution in the ȳ coordinate. This
implies that the model for the gas flow within the porous media can be obtained by considering
this gas flow within a single cylindrical pore. However, since the pore radius is on the order
of a micron, which is approximately the mean-free-path length scale of the gas molecule,
Knudsen diffusion is appropriate (see Gupta and Evans [5], and Skamser et al. [13]). The
mass flux is related to the concentration gradient and temperature by

�M = −4 r̄

3

(
8Rg T

πMw

)1/2
∂C̄

∂x̄
, (7)



Microwave-enhanced chemical vapor infiltration 37

where Mw is the molecular weight of the gas. Note that the presence of the reaction requires
that there is a mass loss along the inside perimeter of the pore. Further, it is assumed that the
filling of the pore occurs in an axisymmetric fashion with respect to the pore axis. A simple
conservation of mass argument within a cylindrical pore leads to the following equation for
the gas concentration

(r̄2C̄)t̄ = 4

3

[
r̄3

(
8Rg T

πMw

)1/2

C̄x̄

]
x̄

− 2 r̄ kR . (8)

Finally, a simple mass balance across the surface area of the pore gives a relation for the
evolution of the pore radius with respect to the reaction

∂r̄

∂ t̄
= −Mw

ρS
kR . (9)

These equations are only valid within the preform S0 < |x| < a. At the interfaces between
the preform and the environment, we consider that the concentration of TMS remains fixed
at the inlet C̄(±a, t) = C0. A second condition in the concentration is needed to close the
problem, and we shall derive the appropriate boundary condition in the next section.

Next, we formulate the equations governing the electric field. Two plane, time-harmonic
electromagnetic waves of frequency ω impinge upon the sample from the left and from the
right. A portion of these waves scatters from the interfaces at x̄ = ±a, a portion penetrates to
heat the preform, a portion scatters from the interfaces at x̄ = ±S0, and a portion penetrates to
heat the substrate. Since the waves impinge the sample symmetrically, we apply the ‘no-flux’
boundary condition on the electric field at x̄ = 0. In the free-space region given by |x̄| > a,
the electric field is given by

E = E0

[
ei k̄0 x̄−iωt̄ + �e−i k̄0 x̄−i ωt̄

]
k + c.c. , (10)

where E0 is the strength of the incident field, k̄0 = ω/c, c is the speed of light in free space,
� is the total reflection coefficient and c.c. is the complex conjugate term.

The electric field is given by E = [
Ē(x̄) e−iωt̄

]
k, where Ē is its complex amplitude. With

these assumptions, Maxwell’s equations reduce to the following differential equation

d2Ē

dx̄2
+ (

k̄(φ)
)2

[
1 + i

ζ(φ, T )

ωε(φ)

]
E = 0 , (11)

where ε(φ) is the effective permittivity of the medium. The magnetic permeabilities of both
materials are assumed to be identical to that of free space.

At the interface x̄ = ±a, the tangential electric and magnetic fields are continuous, hence
Ē(x̄) and its derivative are also continuous at x̄ = ±a. This allows us to solve for � in terms
of the field and its derivative to find that Ē satisfies the boundary condition

dĒ

dx̄
± ik̄(φ)Ē(∓a) = ±2E0 i k̄0 e∓i k̄0 a . (12)

Finally, we need to consider the energy balance. There will be a heat-source term that
represents the conversion of electrical energy to thermal energy, and a heat-sink term that
represents the losses due to the reaction, that is, the temperature T satisfies[

ρ(φ)cp(φ)T
]
t̄

= [
K(φ)Tx̄

]
x̄
+ 1

2
ζ(φ, T )|Ē|2 −�HR SA kR , (13)
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where SA is the surface area available in the preform for the reaction to occur. From Sotirchos
[4], this term can be written as

SA = −2r̄ log (1 − φ0)

r2
0

[1 − φ0](r̄/r0)
2
, (14)

with the symmetry boundary condition given by Tx̄ = 0 at x̄ = 0.
At the preform/environment interface x̄ = ±a, we assume that there are heat loss terms

due to advection and radiation

K(φ)Tx̄ = −h(T − Ta)− sε(T 4 − T 4
a ) , (15)

where Ta is the ambient temperature, h is the heat transfer coefficient (approximately 170
W/m2 K), s is the Stefan-Boltzmann constant, and ε is the emissivity.

We nondimensionalize this system by introducing the space scale x̄ = a x, the time scale
t̄ = t a2/κ(0), where κ(φ) = K(φ)/ρcp(φ) and the dimensionless dependent variables
T = Ta(θ + 1), C̄ = C0 C, Ē = E0E, r̄ = r0 r, and S = S0/a to arrive at the following
nondimensional system{

ρcp(φ)

ρcp(0)
θ

}
t

=
[
K(φ)

K(φ0)
θx

]
x

+ K(φ)

K(0)
B P

ζ(φ, θ)

ζ(0, 0)
|E|2 − 2KRQr

[
1 − φ0

]r2−1/4
Ce

− A
(θ+1) , (16)

[
r2C

]
t

= D
[
r3

√
(θ + 1)Cx

]
x
− 2KRr C e

− A
(θ+1) , (17)

d2E

dx2
+ (

k̄(φ) a
)2

[1 + iν(r, θ)]E = 0 , (18)

∂r

∂t
= −M KR C e

− A
(θ+1) , (19)

where the wavenumber of the electric field in the medium k(φ) = a k̄(φ) and the loss term
ν(φ, θ) = ζ(φ, θ)/[ωε(φ)]. This system is subject to the boundary conditions

x = 0 : θx = 0 ,
dE

dx
= 0 , (20)

x = 1 : K(φ)

K(φ0)
θx = −Bθ − B R

[
(θ + 1)4 − 1

]
,

dE

dx
− i k(φ) E = −2 i k−i k , (21)

C = 1 . (22)

The nondimensional parameters are given by a Biot number B = h a/K(φ0), a measure of
input power P = (aζ(0, 0)|E0|2)/(2h Ta), the ratio of the thermal diffusion time-scale to the
reaction time scale KR = (k0a

2)/(r0κ(0)), a heat of reaction parameter Q, and a ratio of the
thermal-diffusion time scale to the gas-diffusion time scale D,

Q = C0
[(1 − φ0)

1/4�HR log (1 − φ0)
−1]

ρcp(0)Ta
, D = 4 r0

3 κ(0)

[
8Rg Ta

πMw

]1/2

. (23)

There is also a mass ratio M = MwC0/ρS , an activation energy A = Ea/(RgTa) ≈ 50, and a
radiation heat-loss parameter given by R = (sεT 3

a )/h.
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2.2. SHARP-INTERFACE LIMIT

We notice that the activation energy parameter A � 1. Large activation energy asymptotics
have been used successfully in a wide range of problems involving chemical reactions [8, 9,
10]. Since the activation energy is large, we assume that A = A/δ, where δ � 1 is the small
parameter scale about which we want to perform an asymptotic expansion. In these chemical-
reaction models, a critical temperature θc below which the reaction does not occur is defined
by the conservation of energy equations local to the reaction zone. A balance of the jump in
heat flux across this zone and the heat of reaction within this region (see equation (30) below)
suggests a reaction temperature given in terms of the parameters KR and Q by

QKR = δe
A

θc+1 . (24)

Using the values of a = 1 cm , KR = 1·66 × 108, Q = 5 × 10−4, δ = 0·08 and r0 = 1 µm,
we find that θc = 2·589, which corresponds to a dimensional temperature of Tc = 1100 K.

We then define the following unit-order parameters as

Q = δ2Q , D = δD , M = δ2M , (25)

and rewrite the field equations (16)–(19) as{
ρcp(φ)

ρcp(0)
θ

}
t

=
[
K(φ)

K(0)
θx

]
x

+ K(φ0)

K(0)
B P

ζ(φ, θ)

ζ(0, 0)
|E|2 − 2Q r

[
1 − φ0

]r2−1/4
Ce

A
δ

[
1

(θc+1) − 1
θ+1

]
,(26)

[
r2C

]
t

= D

δ

[
r3

√
(θ + 1)Cx

]
x
− 2

δ2
r C e

A
δ

[
1

(θc+1) − 1
(θ+1)

]
, (27)

d2E

dx2
+ k2(φ)

[
1 + iν(φ, θ)

]
E = 0 , (28)

∂r

∂t
= −MC e

A
δ

[
1

(θc+1) − 1
θ+1

]
. (29)

Since the reaction occurs on a much faster time scale than heat diffuses, we note when
the reaction temperature occurs, the space scale in which reaction takes place is O(δ). This
suggests that in the limit δ → 0, this region will, to leading order, be a sharp interface between
the composite (r = 0) and the preform r = 1. We define this interface x = S(t), as is common
to phase-field problems of this class, as r(S(t), t) = 1/2. This is a compositional definition
which is used in phase-change models (e.g. solidification, evaporation of a fluid). Another
definition that is used in reacting fronts studies is that the location of the interface is where
the medium achieves its critical temperature θ(S(t), t) = θc. We shall see in our numerical
studies that these definitions are consistent, but that the speed of the moving interface may
vary based on its definition [11]. To find the appropriate boundary conditions at this interface,
we need to integrate the field equations (26)–(29) across a pillbox of size ε � δ to find the
appropriate jump conditions across the reaction region. We follow Anderson, McFadden and
Wheeler [14] in this derivation, and we find the following interfacial conditions local to a
moving frame ξ = x − S(t):∫ ε

−ε

[
ρcp(φ)

ρcp(0)
θ

]
t

dξ − S ′(t)
[
ρcp(φ)

ρcp(0)
θ

]∣∣∣∣
ε

−ε

=
[
K(φ)

K(0)
θξ

]∣∣∣∣
ε

−ε
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+
∫ ε

−ε

K(φ0)

K(0)
B P

ζ(φ, θ)

ζ(0, 0)
|E|2 − 2Qr[1 − φ0]r2−1/4 C e

A
δ

[
1

(θc+1) − 1
(θ+1)

]
dξ , (30)∫ ε

−ε

[
r2C

]
t
dξ − S ′(t)

[
r2C

]∣∣ε−ε
= D

δ

[
r3

√
θ + 1Cξ

]∣∣∣ε−ε

− 2

δ2

∫ ε

−ε

r C e
A
δ

[
1

(θc+1) − 1
(θ+1)

]
dξ , (31)[

dE

dx

]∣∣∣∣
ε

−ε

+
∫ ε

−ε

k2(φ)
[
1 + iν(φ)

]
Edξ = 0 , (32)

∫ ε

−ε

rtdξ − S ′(t) [r]|ε−ε = −M

∫ ε

−ε

C e
A
δ

[
1

(θc+1) − 1
(θ+1)

]
dξ , (33)

where the notation
[
f (ξ)

]∣∣ε−ε
= f (ε)− f (−ε).

In the limit ε → 0 with 0 � δ � ε � 1, we find that the integrals of the unsteady terms
in Equations (30), (31), (33) vanish, since the quantities θ, r, C are expected to be bounded
within the reaction region. By the same argument, and since E is expected to be bounded in
the reaction region, the integrals involving the electric field E in Equations (30) and (32) also
vanish in this limit. The only integral terms that do not vanish necessarily in the limit are those
that involve the reaction term. To evaluate these integrals, the full problem within the pillbox
−ε < ξ < ε needs to be solved, through a matched asymptotic analysis to the solution of
the problem outside of the reaction region, and then the integrals can be computed directly.
However, we note that the assumption ε � δ allows for the possibility of an asymptotic
analysis of this integral. We defer this analysis to Appendix A, and for now assume that these
reaction integrals can be computed in terms of the outer variables.

The conditions (30)–(32) are not sufficient to determine the appropriate boundary con-
ditions at the interface. We augment these conditions with continuity of temperature and
continuity of the electric field at the interface. The continuity of the electric field is a reason-
able assumption since the reaction zone is very small compared to a wavelength. The choice
of continuity of temperature is typically used in modeling exothermic reactions, where it is
more likely that a jump in temperature across the reaction region is present compared to an
endothermic reaction. Hence, our assumption is appropriate.

Thus, we have converted a single partial differential system (16)–(22) to two partial dif-
ferential systems with interfacial conditions between the composite region 0 < x < S, where
r = C = φ = 0, and the preform region S < x < 1 where r = 1,φ = φ0. We can then write
this system as, with τ = t κ(φ0)/κ(0),

κ(φ0)

κ(0)
θ2τ − θ2xx = K(φ0)

K(0)
B P

ζ(0, θ2)

ζ(0, 0)
|E2|2 , 0 < x < S(τ) , (34)

d2E2

dx2
+ k2(0) [1 + iν(0, θ2)]E2 = 0 , (35)

θ1τ − θ1xx = B P
ζ(φ0, θ)

ζ(0, 0)
|E1|2

− K(0)

K(φ0)
Q

[
1 − φ0

]−1/4
Ce

A
δ

[
1

θc+1 − 1
θ1+1

]
, S(τ) < x < 1 , (36)
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δ
κ(φ0)

κ(0)
Cτ = D

[√
θ1 + 1Cx

]
x
− 1

δ
C e

A
δ

[
1

θc+1 − 1
θ1+1

]
, (37)

d2E1

dx2
+ k2(φ0)

[
1 + iν(φ0, θ1)

]
E1 = 0 . (38)

This system has to be solved with symmetry boundary conditions at x = 0,

θ2x(0, τ) = 0 , E′
2(0) = 0 , (39)

the interfacial conditions at x = S(t) given by

θ1(S, τ) = θ2(S, τ) , (40)
K(φ0)

K(0)
θ1x − θ2x = −κ(φ0)

κ(0)
S ′(τ)

{(
ρcp(φ0)

ρcp(0)
− 1

)
θ1(S, τ)+ Q

M

}
, (41)

E1(S) = E2(S) , (42)
dE1

dx
= dE2

dx
, (43)

δD
√

θ1(S, τ)+ 1Cx(S, τ) = κ(φ0)

κ(0)
S ′(τ)

[
1

M
− δ2 C(S, τ)

]
, (44)

S ′(τ) = κ(0)

κ(φ0)
M lim

ε→0

∫ ε

−ε

Ce
A
δ

[
1

θc+1 − 1
θ1+1

]
dξ . (45)

At the preform/environment interface at x = 1, we find that

θ1x = −Bθ1 − B R
[
(θ1 + 1)4 − 1

]
, C = 1 . (46)

2.3. THE LIMIT δ → 0

We now consider an asymptotic approach to the problem (34)–(46) in the limit δ → 0. We
note that initially we assume that θ1(x, 0) = θ2(x, 0) = 0, and that C(x, 0) = 1. With this
assumption, we know that for a finite time the reaction terms in the energy and concentration
equations for the preform will be exponentially small, compared to the algebraically small
expansion below. Thus, we shall ignore these terms when solving the temperature and gas
concentration within the preform. We need to monitor our solution for consistency with this
assumption.

Following the analysis of the Pelesko and Kriegsmann [12] for the microwave heating
problem, and motivated by the scales given in Table 1, we can define the ratio of thermal
conductivites as

K(φ0)

K(0)
= γδ ,

ρcp(φ0)

ρcp(0)
= µ = O(1) , (47)

and the ratio of electrical conductivities as

ζ(0, θ)

ζ(φ0, 0)
= g(0, θ)

δ2
, where g(0, θ) = e3θ , (48)
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and expand each of the dependent variables in a regular asymptotic series in δ,

θj = θ
(0)
j + δθ

(1)
j + · · · , (49)

C = C(0) + δC(1) + · · · , (50)

Ej = E
(0)
j + δE

(1)
j + · · · . (51)

At leading order we find in the composite 0 < x < S(t) that

θ
(0)
2xx = 0 , (52)

d2E
(0)
2

dx2
+ k2(0)

[
1 + i ν(0, θ(0)2 )

]
E
(0)
2 = 0 , (53)

and in the preform S(τ) < x < 1 that

θ
(0)
1τ = θ

(0)
1xx , (54)

D

[√
θ
(0)
1 + 1C(0)

x

]
x

= 0 , (55)

d2E
(0)
1

dx2
+ k2(φ0)E

(0)
1 = 0 . (56)

Note that from (48) ν(φ0, 0) = O(δ2) if ν(0, 0) = O(1), resulting in the no-loss propagation
of the electric field in the preform at this order. The boundary conditions at this order are the
symmetry conditions

θ
(0)
2x = E

(0)
2x (0) = 0, (57)

and the interfacial conditions

θ
(0)
1 (S, τ) = θ

(0)
2 (S, τ) , (58)

θ
(0)
2x = 0 , (59)

E
(0)
2 (S) = E

(0)
1 (S) , (60)

E
(0)
2x (S) = E

(0)
1x (S) , (61)[

D

√
θ
(0)
1 (S, τ)+ 1

]
C(0)
x (S, τ) = γ

µM
S ′(τ) . (62)

At the preform/environment interface we have

θ
(0)
1x = −B θ1 − B R

[
(θ

(0)
1 + 1)4 − 1

]
, C = 1 . (63)

Note that θ
(0)
2 (x, τ) = θ

(0)
2 (τ). The electric field depends only parametrically in time, and

following Pelesko and Kriegsmann [12], the resulting system for the temperature and gas
concentration in the preform is

θ
(0)
1τ = θ

(0)
1xx , (64)[√

θ
(0)
1 + 1 C(0)

x

]
x

= 0 . (65)

To determine the conservation of heat flux at the preform/composite interface x = S(τ), we
integrate the O(δ) heat equation in the composite in x once across the composite, and noting
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that there is zero heat flux at the line of symmetry x = 0, we arrive at the following boundary
condition for θ

(0)
1x (S), along with the appropriate concentration flux boundary condition at

x = S(τ),

θ
(0)
1x (S, τ) = S

µ
θ
(0)
1τ − B P e3 θ

(0)
1

∫ S

0
|E(0)

2 |2 dx

− 1

µ
S ′(τ)

{
(µ − 1) θ(0)1 + Q

M

}
, (66)[

D

√
θ
(0)
1 (S, τ)+ 1

]
C(0)
x (S, τ) = γ

µM
S ′(τ) . (67)

At the preform/environment interface, we have

θ
(0)
1x = −B θ

(0)
1 − B R

[
(θ

(0)
1 + 1)4 − 1

]
, x = 1 , (68)

C(0) = 1 . (69)

In addition, from the analysis performed in Appendix A, the speed of the moving interface
S ′(τ) is, to leading order, given by

S ′(τ) =




0, θ
(0)
1 (S, τ) < θc

µM(θc + 1)2

γA
C(0)(S, τ)

{
A

(θc + 1)2
− 1

θ
(0)
1x (S, τ)

}
, θ

(0)
1 (S, τ) = θc

. (70)

This form has the restrictions that θ
(0)
1 < θc and θ

(0)
1x = o(δ) for x > S. Note that the interfacial

speed is dependent on the local gas concentration near the interface. This system requires
initial conditions in τ for the temperature, concentration, and interfacial position θ

(0)
1 (x, 0) =

*0(x), C(0)(x, 0) = C0(x), and S(0) = S0.
A limitation in this process using conventional heating is that pores near the gas inlet may

close prior to the the completion of the process. In Appendix B, we show in the asymptotic
limit δ → 0 that inlet pore closure is equivalent to the condition θ

(0)
1x = O(δ). Thus, we

shall use this criterion in our numerical simulations below to terminate our calculation as the
surface pores close and choke off the reactant from the physical process.

3. Results

We investigated the above system numerically for SiC deposited on an alumina preform. We
scaled the moving domain S(τ) < x < 1 to the stationary domain 0 < ξ < 1, resulting in an
advection-diffusion equation for temperature within the preform. Finite-difference techniques
were used in space, and the updating in time was performed using Crank-Nicholson on the
diffusion terms and upwinding on the advection terms. Since the gas concentration within
the preform is quasi-steady, the solution could be found analytically for fixed time τ, and
this analytic solution was implemented in the code for the solution to C(0). To avoid time-
step errors when the reaction begins, the step function was modeled as a hyperbolic tangent
function with some transition scale q � δ. Typical values of q were in the range of 10−3,
and there was no quantitative change to this order in the solution for smaller values, provided
that the time step was adjusted to resolve the transition to the reaction stage (�τ = 10−5 in
the results below). The numerical simulation was terminated when the asymptotic expansion
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for S ′(τ) ceased to be valid, or equivalently when the pore radius at the preform/environment
interface r(1, τ) closed. We chose the condition that θ

(0)
1x (S, τ) = 3δ as the stopping criteria.

Since this criterion is conservative, the completion-rate results presented below should be
viewed as minimum completion rates. We address the dynamics of the process when this
criterion is relaxed in the final section. To simplify in the presentation, we use the notation
* = θ

(0)
1 , C = C(0), and E = E

(0)
2 . We further assume that the initial porosity φ0 = 1/2 in

the results that follow.
A threshold power level is needed for the reaction to occur. If the interface remains fixed,

then the system (37)–(43) yields a linear steady-state solution *(x, τ) = *s(x), S(τ) = S0

subject to a nonlinear relation for the preform/composite interfacial temperature *s(S0) and
the preform environment temperature *s(1)

*′
s(x) = −*s(S0)−*s(1)

1 − S0

= −B P e3*s(S0)

∫ S0

0
|E(*s(S0))|2dx

= −B*s(1) − B R
[
(*s(1)+ 1)4 − 1

]
. (71)

This relation shows that if the power parameter P is sufficiently weak, or if the initial substrate
thickness is sufficiently small, then the steady interfacial temperature *s(S0) may never reach
the critical temperature for the reaction to occur. We solve this nonlinear relation numerically
for S0 = 0·1, S0 = 0·5, and S0 = 0·9 in Figure 2. Notice that for small initial powers that the
steady-state solution remains below the required temperature *c at which the reaction occurs.
For larger power levels, the only steady-state solution is represented by the upper branch,
where the skin effect within the composite limits its absorption of power. Note that for thicker
initial composites, the required power needed to instigate the transition to the upper branch is
less [12, 16].

In Figure 3 we show the temperatures at the preform/composite interface with P = 0·1, 0·2,
0·3, 0·4 and S0 = 0·1, based on our time-dependent numerical solution of (37)-(43) without
reaction. In the cases P = 0·1, 0·2, 0·3, the temperature attains a steady state, since the power
generated by the microwaves balance the heat loss at the preform/environment interface. This
heat loss is not sufficient for the case P = 0·4. The steady state occurs on the upper branch
where the skin-effect mechanism limits further growth [16]. This is not shown in Figure 3. The
steady-state results are identical to those given by the S-shaped response curve in Figure 2.
For all the cases considered, the values of equilibrium temperature along the upper branch of
the S-shaped curve are larger than the critical temperature at which the reaction takes place.

We now focus our attention on the dynamical problem where the boundary is allowed to
propagate. There are three distinct stages of the time-dependent process that we can identify.
Firstly, there is the inert heating stage, when the substrate is heated by the microwaves and
the preform by thermal diffusion. No reaction occurs during this stage. The second régime is
the processing stage where the temperature at the preform/composite interface is at *c, and
interface S(τ) begins to move to the right. The final stage occurs when the reaction front is
close enough to the preform/environment interface to produce a nearly uniform temperature.
This implies that the temperature of the preform is near the critical temperature: the pores
close quickly on a time scale commensurate with the front propagation. During this third
stage our reaction assumption is violated and its resolution can only be found by solving the
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Figure 2. Steady-state preform/environment temperatures *s(1) plotted against input power P for S0 = 0·1,
S0 = 0·5 and S0 = 0·9. In all the cases, power levels above P = 0·3049 will result in the solution represented by
the upper branch.

Figure 3. Composite/preform interfacial temperature as a function of τ for different power levels
P = 0·1, 0·2, 0·3, 0·4 with S0 = 0·1. We see that for sufficiently small power levels, the system achieves a
lower-branch steady state. P = 0·4 shows the transition to the upper branch.
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Figure 4. Composite interfacial temperature *(S, τ), preform/environment interfacial temperature *(1, τ), and
the integral of the electric-field amplitude in the composite ||E(S, τ)||2 = ∫ S

0 |E(x, τ)|2dx as a function of τ for
P = M = 1, *(x, 0) = 0. We see from times τ = 0 (not shown) to τ = 107·95 that the system is being heated
due to the microwaves. The onset of thermal runaway is seen in the decrease in the magnetic field due to the skin
effect within the composite. The composite interfacial temperature is essentially fixed at *c during the process.

original phase-field type system in the reduced domain S(τ) < x < 1. We do not address this
case here.

We begin by considering the particular case P = 1, S0 = 0·1. When the initial pore radius
is r0 = 1µm and the sample size a = 1 cm, then P = 1 corresponds to a power density
of approximately 30 W/cm2, and τ = 100 corresponds to a time of 1.85 hours. In all of the
simulations that follow, we assume that the remaining physical parameters are fixed: A =
1,D = 0·6, k(0) = ν(0, 0) = 0·1, and k(φ0) = 0·15. In Figure 4, we show the temperatures
*(S, τ) and *(1, τ) as a function of the time τ over the process, in addition to the integral
of the magnitude of the electric field at the preform/composite interface ||E(S, τ)||2. We see
that during the inert stage the temperature increases up to the critical temperature and the
electric field in the substrate is essentially constant. Prior to reaching the critical temperature,
the interfacial temperature appears to be in thermal runaway with the amplitude of the electric
field decreasing. This feature is consistent with the skin effect occurring in the composite. In
the processing stage, the temperature remains fixed at *c, and the magnitude of the electric
field decays as the domain of the composite increases with S(τ). This process continues until
the temperature in the preform is, based on our stopping criterion, nearly spatially uniform.

In Figure 5 we show the evolution of the concentration at the composite/preform interface
C(S, τ) as a function of τ. Note that once the reaction begins, there is an immediate loss of
concentration, which then relaxes as S(τ) moves into the preform. The discontinuity at the
onset of the reaction can be resolved by reintroducing the time derivative in Equation (65).
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Figure 5. Preform gas concentration C(S, τ), as a function of τ for P = M = 1, *(x, 0) = 0. After the process
begins, there is an immediate depletion of the gas local to the composite interface.

Figure 6 shows the evolution of the interfacial location S(τ) over time, and we note that
the rate of growth slowly increases during the process. This weak effect occurs because the
temperature gradient in the preform is becoming more shallow, as seen from Equation (70).

The temperature and concentration profiles are shown in Figures 7 and 8, respectively.
Note that as the composite grows into the preform, the preform temperature becomes more
uniform. This effect causes the concentration to be nearly linear, as can be easily deduced by
integrating equation (65).

There are three control parameters that can be used either to enhance the final composition
percentage of the system or to shorten the processing time: P , M and *0 = *(x, 0).

In Figure 9, we show the final interfacial location for different values of P given the initial
composition thicknesses S0 = 0·1, 0·2, 0·3, 0·5. We see that the final interfacial positions
Sf do not depend on the initial composite thickness, but are improved with increased power.
Figure 10 shows the values τf at which the simulation is terminated. Note that increasing the
initial thickness S0 shortens the processing time, as is expected. In addition, increasing the
power, for a fixed S0, reduces τf . Figure 11 shows the final position Sf as a function of the
mass ratio M for an input power of P = 1. Notice that there is a limiting final composition
that is possible, no matter how large the gas concentration parameter M becomes. In addition,
the final time τf is independent of M in this parameter range as well. This can be inferred
from Equations (39) and (40), where we notice that the the concentration flux and the jump
in the temperature flux at x = S(τ) are independent of M. For sufficiently slow propagation
speeds S ′(τ), corresponding to small M, heat transport across the preform is faster than the
front propagation, leading to a poor final composite fraction.

A more curious effect is how the initial ambient temperature can affect the process. There is
little dependence on the final composition as a function of initial temperature *0, where Sf =
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Figure 6. Composite interfacial location S(τ), as a function of τ for P = M = 1, *(x, 0) = 0.

Figure 7. Preform temperature profiles at the values τ = 107·9, S(τ) = 0·1, τ = 108·15, S(τ) = 0·27 and
τ = 108·34, S(τ) = 0·47 for P = M = 1, *(x, 0) = 0. Note that these plots are in the scaled domain
ξ = (x − S(τ))/(1 − S(τ)).
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Figure 8. Gas concentration profiles at the values τ = 107·9, S(τ) = 0·1, τ = 108·15, S(τ) = 0·27 and
τ = 108·34, S(τ) = 0·47 for P = M = 1, *(x, 0) = 0. Note that these plots are in the scaled domain
ξ = (x − S(τ))/(1 − S(τ)). The profiles are nearly linear, since the gradients in temperature seen in Figure 7 are
small.

Figure 9. Final interfacial locations Sf for different input power levels with M = 1, *0 = 0 and initial composite
thicknesses S(0) = 0·1, S(0) = 0·2, and S(0) = 0·5. Larger input powers lead to better completion.
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Figure 10. Final processing times for different input power levels for M = 1, *0 = 0, and initial composite
thicknesses S(0) = 0·1, S(0) = 0·2, and S(0) = 0·5. Larger input powers lead to faster rates of completion.

Figure 11. Final interfacial locations Sf for different inlet gas concentrations M for P = 1, *0 = 0, and initial
composite thicknesses S(0) = 0·1, S(0) = 0·2. We see that there is a critical value of M above which the final
composition is minimally affected. Note that in the S(0) = 0·2 case that there is a detrimental effect of larger gas
concentrations to the final composition fraction.
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Figure 12. Sensitivity of the processing time τf to the initial ambient temperature *0 for P = M = 1.

0·47 for 0 < *0 < 0·5 for P = M = 1. However, the processing times τf vary significantly
over the same domain, even for small increases in temperature as is shown in Figure 12. The
driving factor is the strong dependence of electrical conductivity on temperature. For elevated
temperatures, the composite heats up more quickly, while the rate of heat transport in the
preform is unaffected. Thus, the same final composition is achieved in a shorter time. Clearly,
more overall energy needs to be expended in this case.

4. Conclusions

We have investigated a simple model of microwave-enhanced chemical vapor infiltration using
the decomposition of TMS as a paradigm. By using the large activation-energy limit, we
derived a sharp interface model which describes the motion of a moving front that separates
the composite from the preform. This model takes into account the effects of changing material
properties during the process, the heat of reaction, and nonuniformities in the gas concentra-
tion within the preform. This model is most useful in the limit where the time-scale of the
reaction is much shorter than that of thermal conduction within the preform.

In a previous work [11], we used a thermally based definition of the interfacial location,
assuming that variations in gas concentration were negligible. From our analysis in Appendix
B, we find that the definition used in that work and the compositional definition used here
differ by O(δ). Thus, if concentration gradients are assumed to be neglible, then these two
definitions of the interfacial location are reconciled. However, with a spatially dependent gas
concentration field, the thermally-based definition is not appropriate.

A second comment relates to our conservative choice of the termination criterion for our
simulation. The asymptotic analysis gives a scale at which the asymptotics are no longer
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valid *x(S, τ) = O(δ). There is some freedom in the choice of quantitatively interpreting
this condition. The choice used in this work is considered conservative. However, we did
continue the run presented in Figure 4 until *x(S, τ) = 0·25 δ. In that case, we found that
the final compositional value Sf = 0·77, a 60% improvement over the case used in the paper.
Occasionally, asymptotic models can be useful even beyond their range of asymptotic validity.
A full solution to the original porous problem would have to be undertaken to determine the
accuracy of the asymptotic model presented here beyond its range of validity.

Since the model is based on a sharp interface between the composite and the preform,
higher dimensional extensions can be formulated in a straightforward manner. In addition, the
presence of HCl gas within the preform as the system reacts is detrimental to the composition
process. Including this effect, in addition to a forced flow in the y-direction can also be
implemented using the presented theory relatively directly. Finally, we note that this model
does not include the possibility of the microwave heating of the preform. Such considerations
will be the subject of future works.
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Appendix A

In this section, we derive the asymptotic expansion of integrals of the form

I =
∫ ε

−ε

F(r)Ce
A
δ

[
1

θc+1 − 1
θ+1

]
dξ , (A1)

in the limit where 0 � δ � ε. Firstly, we can use the mean-value theorem for integrals to
eliminate the dependence on the cylinder radius r,

I = F(r̂)

∫ ε

−ε

Ce
A
δ

[
1

θc+1 − 1
θ+1

]
dξ (A2)

where 0 < r̂ < 1. In the limit as ε → 0, we find that r̂ → 1/2. The remainder of the integral
is determined based on the assumption that C(ξ, t) = 0 if −ε < ξ < −δ, that is, there is no
gas concentration within the composite. With the ansatz, the integral I can be decomposed
into two different integrals,

I = I+ + I−

=
∫ ε

0
Ce

A
δ

[
1

θc+1 − 1
θ+1

]
dξ +

∫ 0

−δ

Ce
A
δ

[
1

θc+1 − 1
θ+1

]
dξ . (A3)

Standard asymptotic techniques (e.g. Laplace’s method [15]) can be applied after the sub-
stitution u = ξ/δ is made. From this expansion, and noting that ε/δ → ∞, we find that for
θ(S, t) = θc

I+ = −C(S, t)

{
δ [θc + 1]2

Aθ+
x (S, t)

}
+O(δ2) , (A4)
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I− = C(S, t)

{
δ [θc + 1]2

Aθ−
x (S, t)

} (
1 − exp

[−Aθ−
x (S, t)

(θc + 1)2

])
+O(δ2) , (A5)

where the expansion for I− breaks down when θ−
x (S, t) = O(δ).

Appendix B

In this section, we derive the time for the inlet pore to close at x = 1, given the temperature
variation in time. Consider

∂r

∂τ
= −M

δ
C(1, τ)e

A
δ

[
1

θc+1 − 1
θ1(1,τ)+1

]
, (B1)

with the initial condition r(1, τ) = 1. we can formally integrate this in time

r(1, τ) = 1 − M

∫ τ

0
C(1, τ)e

A
δ

[
1

θc+1 − 1
θ1(1,τ)+1

]
dτ

δ
. (B2)

Let us define τc as the time at which θ1(1, τc) = θc. Then, in the limit δ → 0, the integrand
is exponentially small provided that θ1(1, τ)− θc � δ. If we chose then some value �τ � δ,
then we can write the pore radius as

r(1, τ) =

 1 − M

∫ τ

τc−�τ

C(1, τ)e
A
δ

[
1

θc+1 − 1
θ1(1,τ)+1

]
dτ

δ
τ > τc −�τ

1 τ < τc −�τ

. (B3)

Note that since we are restricting our analysis to x = 1, C(1, τ) = 1 for all τ.
If 0 < δ � �τ � 1, then we can expand the temperature θ1(1, τ) as a power series of

τ − τc = δu,

θ1(1, τ) = θc + δuθ1τ(1, τc)+ . . .

and rewrite the integral for the pore radius as

r(1, τ) =

 1 − M

∫ u

−�τ/δ
e

A
δ

[
θ′
cδu+O(δ2)

(θc+1)(θc+δθ′
cu+O(δ2))

]
du τ > τc −�τ

1 τ < τc −�τ

, (B4)

where θ′
c = θ1τ(1, τc). If we define the time τf as the time when the pore closes, then the

corresponding time uf obeys to leading order

M
[θc + 1]2

Aθ′
c

exp

[
A θ′

c uf

[θc + 1]2

]
= 1 . (B5)

From this, we find that the time for the pore to close τf is given by

τf = τc + δ
[θc + 1]2

Aθ′
c

log

[
Aθ′

c

M[θc + 1]2

]
. (B6)

Thus, the pore closure time is within O(δ) of the time at which the temperature θ1(1, τ) = θc.
Since we find that temperature variations in time are O(1) late in the process, and the tem-
perature θ1(x, τ) is monotonically decreasing in x, then this can only happen when θ1(S, τ)−
θ1(1, τ) = O(δ), or when θ1x(S, τ) = O(δ).
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